о визуализации данных и жизни

Позднее Ctrl + ↑

Вопрос-ответ: о работе со сложными системами

Анонимно:

Я начинающий дизайнер и мне поручили обновить интерфейс сложной банковской системы. С чего лучше начать работу, как удержать в голове зависимости между разными элементами? Таблицы и списки, кажется, только сильнее запутывают.

Представьте, что перед вами гигантский паззл. Вы можете сначала рассмотреть и классифицировать все кусочки, а потом приступить к сборке. Или взяться за небольшой фрагмент, собрать его, перейти к следующей тематической горстке, и так, пока «слепых пятен» почти не останется.

В работе над сложными системами я придерживаюсь второго пути: начинаю с относительно небольшой, но важной задачи, досконально разбираюсь в ней, предлагаю решение и довожу его до внедрения. Один хороший интерфейс в системе — это уже польза, а в качестве бонуса я получаю близкое знакомство с частью системы и плюс в репутацию. Чем больше таких готовых фрагментов, тем более полная картина складывается в голове, тем более сложные и комплексные задачи я готова решать. Ничего страшного, если после «вскрытия» очередного пласта какие-то из ранних решений придётся пересмотреть, к тому времени они уже принесут пользу.

Я всегда ставлю задачу самостоятельно. Обсуждаю проект с ответственными лицами, разбираюсь, задаю вопросы, после чего формулирую задачу своими словами в 2-3-4 абзаца текста. В «Нет-крекере» я периодически сталкивалась с длинными ТЗ, но мне всегда удавалось договориться о живом обсуждении и ни разу не пришлось тратить время на изучение многостраничной документации.

Во время работы над задачей я «загружаю» всю доступную информацию в мозг и даю ей «повариться», пока решение не будет готово. После этого я «выгружаю» готовый фрагмент (фиксирую решение в виде картинок с пояснениями, например, в бейскемпе) и готова приступать к следующей задаче. Пока я ищу решение, я не берусь за другие проекты, не участвую в обсуждениях и встречах, не относящихся к теме. Входящая информация по другим задачам копится в почте и ждёт своего часа.

Резюме
Не пытайтесь объять необъятное, начните с быстрых побед. Ставьте задачу сами, избегайте формальных ТЗ. Сохраняйте фокус, работайте над одной задачей в один момент времени. Фиксируйте результаты для быстрого доступа в будущем. Постепенно собирайте «большую картину» из качественно проработанных фрагментов.

Подробный рассказ о моём опыте работы со сложными системами в «Нет-крекере», 2011 год:

Присылайте вопросы на почту data@datalaboratory.ru — о визуализации данных и не только.

Вопрос-ответ: история университета в лицах

Спрашивает Константин Когут:

Составляя инфографику о сотрудниках университета, перерыл немало таблиц по данным за каждый год. Помогите улучшить инфографику. Приму любую критику.

В плавно перетекающем графике потерялась важная составляющая истории: путь каждого отдельного преподавателя, доцента и профессора. Кто-то из них проработал всего несколько лет, другие посвятили университету всю жизнь, прошли путь от преподавателя до профессора и, возможно, даже заняли пост декана факультета и стали ректорами. Сейчас они выглядят безликой массой, «свалены в кучу».

Смотрите, как визуализировали похожую информацию о заключённых тюрьмы в Гуантанамо дизайнеры «13pt», выигравшие с этой работой престижный конкурс «Малофей»:

Каждый заключённый показан отдельной линией, истории персонажей подписаны прямо на графике рядом с линиями. Думаю, служители науки достойны такого же уважительного обращения :-)

Начните с того, что выделите линии жизни в общей массе:

Такое представление позволяет проследить за судьбой каждого преподавателя, видно общее количество преподавателей за год и как оно получилось: сколько ушло, сколько пришло. Легко показать превращения преподавателя в доцента и доцента в профессора (преподавателей лучше расположить на нижнем этаже графика, профессоров — на верхнем):

Сам график я советую вытянуть в ширину, чтобы избавиться от частых резких скачков и приблизиться к тафтианскому правилу «сорока пяти градусов». В освободившемся пространстве над графиком покажите лица и расскажите историю выдающихся деятелей университета:

Визуализация «количества доцентов, профессоров и преподавателей» превратилась в историю университета в лицах. Такое превращение потребует дополнительного исследования, зато изучать результат будет гораздо интереснее, особенно, если он будет интерактивным.

Присылайте вопросы о визуализации данных на почту: data@datalaboratory.ru, ответы публикуются ежемесячно.

Вопрос-ответ: тендеры в РФ

Спрашивает Алексей Булгаков из компании «Bicotender»:

У нас есть структурированные данные по тендерным закупкам с 2011 года, на основе их мы делаем продукт «Аналитика закупок». Нам интересно визуализировать эти данные: показать суммарные показатели и проявить основные тенденции тендерного рынка.

Главные особенности тендерного рынка, которые проявятся на макроуровне, — это региональность и временная динамика, в т. ч. сезонность. Мы в лаборатории уже сталкивались с похожей задачей, когда визуализировали аномалии оборота наличности. Временная диаграмма и карта, интерактивно связанные между собой, оказались удачным решением для данных такого рода. Возьмём за основу этот формат и адаптируем для тендеров.

Ключевые свойства тендера — стоимость и индустрия. Интересно узнать, какое соотношение тендеров по индустриям, как оно меняется со временем, какие индустрии преобладают в разных регионах. Обозначим индустрию цветом и покрасим регионы на карте цветом главной (по объёму закупок) индустрии, а на диаграмме покажем суммарные объёмы РФ в разбивке по индустриям:

При наведении на месяц видим главные индустрии в этом месяце по регионам; при наведении на регион — временное распределение закупок по индустриям в нём:

Фильтры по индустрии, ценовой категории и региону отсекают потенциально интересные срезы. Например, можно посмотреть только крупные строительные тендеры в Красноярском крае. В этом случае на диаграмме будет показана не только динамика, но и отдельные тендеры:

При наведении на тендер показана подробная информация о нём:

На визуализации показаны только электронные аукционы, завершённые с августа 2014 по июль 2015. Видим, что самые «жирные» индустрии — строительство, медицина, финансы. Строительство преобладает в большинстве регионов, его активность предсказуемо падает в зимние месяцы. В январе самый низкий объём завершённых тендеров по всем индустриям. Что касается регионов, лишь некоторые активно используют систему электронных аукционов: это Москва и Московская область, Санкт-Петербург, Нижний Новгород, Самара, Краснодарский и Краясноярский края, с 2015 года к ним присоединилась Волгоградская область. В других регионах электронные аукционы единичные, касаются одной-двух индустрий, их объёмы незначительны. Во многих регионах (показаны белым цветом) они вообще не проводились.

Живой прототип: https://tenders.datalaboratory.ru/

Присылайте вопросы о визуализации данных на почту: data@datalaboratory.ru, ответы публикуются ежемесячно. При участии Дамира Мельникова.

Вопрос-ответ: оценка ресторана

Спрашивает Паша Омелёхин:

Расскажите, как рисовать графики из псевдокривых, наложенных друг на друга, если на них будут смотреть со смартфонов? Как обойтись без легенды, и какие еще есть нюансы при проектировании инфографики для мобильных устройств?

Чтобы ответить максимально по делу, я уточнила у Паши, о каких графиках идёт речь.

Графики показывают оценки разных качеств заведения, например цены и скорости обслуживания. Люди ставят оценки от 0 до 100 на планшете, который им выдают, если они согласны оценить. Все оценки прилетают в личный кабинет владельца бизнеса, на мобильный телефон.

Я попробовал найти решение сам. Сначала это был график, потом я додумался до точек. Большое скопление покажет среднюю оценку, но редкие и сильные отклонения тоже будут видны. Обычный график их не покажет. Не знаю, насколько хорошо мое решение, поэтому интересно посмотреть на твое и узнать, как лучше делать.

Кирпичик данных — это один ответ. Проявив его, Паша показал откуда берутся средние значения, как ответы распределены по оценкам и во времени. Отличная работа с микроуровнем!

Беда в том, что на новых графиках потерялась самая важная информация. Наш мозг не способен «подсчитать» среднее значение, глядя на визуальное распределение результатов, а именно средние оценки и их динамика интересуют владельца ресторана в первую очередь.

Данные отвечают на вопросы пользователя. Отранжируем вопросы и ответы по важности:

  1. «Что происходит сейчас?» — средняя оценка за неделю по каждому критерию и свежие комментарии.
  2. «Как изменилась ситуация за последнее время?» — динамика средних оценок и история комментариев.
  3. «Что стоит за средними оценками? Насколько они достоверны?» — распределение конкретных ответов.

Исходные графики показываю только динамику (2), пашин вариант даёт доступ к детальным данным (3). Проявим на макроуровне все данные с соответсвующим важности весом — оценку за прошлую неделю крупным числом, динамику ярким графиком, распределение полупрозрачным облаком на фоне:

Вместо батареи переключателей «день | неделя | месяц | год» выберем временные отрезки, близкие к реальности ресторатора, например, средние за неделю, полное распределение по дням и часам. Комментарии предлагаю не прятать, а показать тут же, бесконечно уходящей в прошлое лентой.

Цвет сейчас дублирует вертикальное измерение. Вместо этого предлагаю использовать разные цвета для разных критериев.

На визуализации мгновенно считывается проблемы со скоростью; легко заметить, что сервис хороший, но ухудшается; при желании можно рассмотреть, что оценки последнюю неделю ставили активно, их много, и стоит к ним прислушаться. Сразу видны недавние комментарии гостей с конкретными замечаниями и похвалой.

Такой экран отвечает на большинство вопросов большинства пользователей. Остальные сценарии (динамика за год, фильтрация комментариев, оценки по времени суток) предлагаю реализовать на внутренних экранах приложения.

Присылайте вопросы о визуализации данных на почту: data@datalaboratory.ru, ответы публикуются ежемесячно.

Вопрос-ответ: OEE

Спрашивает Роман Бунин:

Для процессных производств (добыча нефти, пищевая промышленность, химическая промышленность) основными источниками затрат являются сырьё, расходы на энергию и оборудование. Оборудование пытаются загрузить как можно больше, так как оно дорогое и если оно простаивает, то это приводит к упущенной прибыли. Основные причины простоев — поломки, производство брака, мойки оборудования, тех. обслуживание и т. п.

Чтобы отслеживать загрузку оборудования, используется специальный KPI — OEE (Overall equipment effectiveness, или Общая эффективность оборудования). Это комплексный показатель, который состоит из трёх частей: доступность, производительность и качество. Каждый измеряется в процентах, которые при перемножении дают общее значение. Анализируя данные, как в целом, так и по каждой составной части, можно найти основные причины простоев. Данные интересны в разрезе единиц оборудования, причин простоев, времени и смен.

Как визуализировать эти данные и срезы?

На приведённом дашборде индикаторы, графики и диаграммы разрознены, никак не связаны между собой. Попробуем выстроить последовательную картину работы предприятия, которая продемонстрирует эффективность каждой машины в отдельности и производства в целом.

На заводе из семечек производят масло. В разных цехах стоит различное оборудование, которое производит продукт (качественный и бракованный) с определённой скоростью (производительностью), нулевой, если машина недоступна. Возможные причины простоя оборудования: плановый или срочный ремонт, переход между режимами, отсутствие сырья или заказа. Кирпичик данных — это результат работы одной машины в единицу времени. А именно, объём фактически произведённой продукции в тоннах (факт), объём качественной продукции в тоннах (факт − брак) и производные относительные характеристики: доступность (время факт / время план), производительность (факт / план), качество (кондиция / факт) и ОЕЕ (Д × П × К). По формулам выходит, что ОЕЕ показывает отношение выпущенной качественной продукции к запланированному максимально возможному объёму.

Покажем произведённую в единицу времени продукцию столбиком из двух частей, кондиции и брака. Над столбиком отметим уровень запланированного максимума:

То же самое в процентах:

Соберём из столбиков картину дневной эффективности, объединим дни в недели на календарной сетке месяца. Абсолютное значение планового объёма может меняться в разные дни и смены, поэтому на графике покажем относительные значения в процентах.

Уровень полных столбцов показывает производительность машины в течение дня, уровень жёлтых столбцов показывает динамику ОЕЕ. Разные оттенки жёлтого, меняющиеся в течение дня, иллюстрируют сменяющие друг друга бригады. Причины простоя показаны разноцветными полосками в дырах на графике.

На таком графике виден не только общий уровень производительности и OEE, но и причины снижения показателей: продолжительное отсутствие сырья, несколько крупных поломок, сопровождающиеся выпуском брака и т. п.

Мы визуализировали эффективность работы одной машины по часам на протяжение месяца. Тот же подход сработает для макроуровней: цеха и завода, а также других временных отрезков, например, целого года. Дополним график таблицей с ключевыми параметрами и интерактивной легендой, которая показывает полный набор параметров при наведении на график.

Живой прототип: https://oee.datalaboratory.ru/

В таблице видно какие цеха и машины снижают общую эффективность, по клику в цех и машину открываются соответсвующие показатели слева и графики справа. Низкая эффективность пресового цеха объясняется плохой работой 1-й жаровни и 2-го пресса. Жаровня простаивает в основном из-за отсутсвия сырья, а также почти на сутки 17-18 июля вышла из строя из-за серьёзной поломки. Пресс в основном простаивает без сырья и заказов. При этом по упущенной прибыли всех опережает цех очистки.

Получившаяся визуализация показывает динамику OEE, объясняет, что значит этот параметр и каковы причины снижения эффективности производства.

Присылайте вопросы о визуализации данных на почту: data@datalaboratory.ru, ответы публикуются ежемесячно. При участии Романа Бунина, Кирилла Беляева и Сергея Долинина.

Ранее Ctrl + ↓