о визуализации данных и жизни

Позднее Ctrl + ↑

Моё вдохновение

Всю сознательную жизнь я прожила под музыку. К любому значимому событию, к периоду жизни, к дружбе и отношениям можно составить плейлист, который перенесёт меня в те времена, оживит воспоминания, эмоции, мысли, страхи и сомнения.

Мне особенно дороги композиции, которые связаны с поворотными жизненными моментами. Они запускали новые процессы в мозгу, помогали увидеть проблемы, вдохновляли на перемены и давали силы на движение в новом направлении. Большая часть поворотных моментов — глубоко личные, но, что удивительно (или нет?), большие профессиональные шаги я тоже делала «под музыку». Я верю, что музыка передаёт больше, чем слова, поэтому хочу поделиться своим музыкальным вдохновением. Вдруг кому сгодится :-)

Весна 2010 года. Я только что ушла из бюро, ушла в никуда, уставшая и ни на что не годная. Первые недели в офисе не добавляли жизни красок. Следующее воспоминание: суббота, ранее утро, нет ещё семи, я за компьютером в залитой весенним солнцем гостиной, вдохновенно пишу парсер объявлений с ЦИАНа для проекта «А из нашего окна», в наушниках на повторе — этот трек с только что вышедшего альбома «Пет-шоп-бойз». Я тогда не понимала, почему он так меня зацепил и буквально вытащил со дна. Я слушала его по 100 раз за день, повторяла текст, как заклинание. И заклинание сработало. Я заново поверила в любовь, в то, что она есть, и что без неё нельзя ни жить, ни работать, и что нужно обязательно делать то, что любишь и делать это с любовью, и тогда всё будет хорошо. До этого момента в моей жизни был огромный дефицит любви, которого я даже не осознавала.


Начало 2011 года. Я уютно устроилась в «Нет-крекере», у меня своя команда, интересные проекты, важные совещания, командировки. У меня, наконец, есть время и деньги на себя (элитный фитнес, бассейн с тренером, салоны красоты, рестораны и вечеринки). Каждое утро в инбоксе — новые задачи, запросы, предложения. Их генерирует безликая корпоративная машина, которую я обслуживаю. С творчеством Регины Спектор я знакома давно, но случайно всплывший в плейлисте трек цепляет за живое. Регина поёт о страхах, о тревоге, о невозможности распоряжаться собственным временем — и о том, что есть другой путь.

Следующие месяцы я много думаю о том, чему я посвящаю своё время и силы, о бесконечном потоке задач, которые я не выбираю. Музыка — это не единственный источник беспокойства, я много читаю, занимаюсь йогой, глубже заглядываю в себя, и понимаю, что трачу время впустую. В мае сообщаю руководству об увольнении, за лето довожу начатые задачи до логического завершения, в сентябре ухожу.


Лето 2013 года. Я только что открыла Лабораторию данных, наняла первых сотрудников, сама веду клиентские проекты. Мне впервые в жизни нужно заботиться не только о себе и своих потребностях (которые я научилась запросто «смирять»), но и о других людях: платить зарплаты, искать интересные задачи, «строить» и вдохновлять. Сложностей предостаточно, будущее туманно. Периодически накатывает страх, мозг заполняют тревоги и сомнения, за ними приходит неуверенность в своих силах. В такие моменты я спасаюсь бегством (буквально, иду на пробежку, благо, именно в это время я готовлюсь к марафону и тренироваться нужно почти каждый день) и слушаю музыку. Этот трек «Гоголя Борделло» о глубине погружения и вере в выбранный путь стал моим личным гимном. Я до сих пор включаю его, когда лаборатория переживает сложные моменты.

Эта музыка и истории — отражение моей души. Они могут показаться наивными, глупыми или просто не понравиться лично вам, но, пожалуйста, будьте осторожны в выражениях и не обижайте меня. Буду рада, если вы поделитесь в комментариях своим музыкальным вдохновением.

Интересные визуализации — 2016

Главные события прошлого года в мире визуализации данных: выборы президента США и Олимпиада в Рио.

С огромным количеством данных, прогнозами, трансляцией результатов в режиме реального времени и неожиданным драматичным поворотом событий, с анализом и подведением итогов — выборы стали парадом новых форматов и изящных решений длиной в несколько месяцев.

Дерево возможных путей к победе, NYT:

Управляя явкой и голосами разных слоёв населения на мини-графиках, меняем картину по штатам:

Шансы на победу, которые менялись в режиме реального времени:

Элегантные информативные форматы прямой трансляции в твиттере @nytgraphics:

Изменяющиеся предпочтения по штатам:

Сдвиг голосов на карте:

Анализ экзитполов:

Карты, составленные из мини-графиков:

Изменяющиеся предпочтения по штатам
Изменяющиеся предпочтения по штатам и округам
Результаты голосования по штатам и округам, акцент на «полярность»

Впечатляющая карта, которая проливает свет на принципиально разную поддержку кандидатов:

«Нью-йорк-таймс» выпустил несколько завораживающих визуализаций по результатам Олимпиады в Рио.

Победа Усейна Болта на стометровке в 13 стоп-кадрах:

Обновлённый новыми результатами график отставания бегунов от Усейна:

Падение и победа Мо Фарах на 10-километровой дистанции:

История олимпийских медалей:

Соотношение выигранных медалей среди мужчин и женщин в разных странах:

Много внимания досталось юной звезде спортивной гимнастики, Симоне Байлз. Интерактивный рассказ о спортсменке:

Фото-визуализация (frame by frame) её победных упражнений:

График сложности элементов, выполняемый Симоной:

Гениальная визуализация результатов забегов и заплывов гифками в твиттере:

Другие достойные внимания, вдохновляющие и необычные визуализации. Интерактивный рассказ и карта движения кораблей, красота на микро- и макро-уровнях:

Необычный способ визуализации связей на диаграмме «Кто на ком женат»:

Культурные различия в США на основе популярности сериалов — безумно интересно изучать:

Визуализация берлинского марафона:

Наша визуализация Московского марафона, которая в этом году получила бронзовую медаль на Малофее:

Исчерпывающая статистика по игрокам NBA, все графики интерактивно связаны между собой:

Детальные сценарии развития событий на Евро—2016:

Симпатичная визуализация цитируемости научных статей в стиле обложки альбома Unknown Pleasures, Joy Division:

Ураганы в окрестностях Флориды — визуализация крупных (именованных) ураганов, которые «аттаковали» Флориду или проходили поблизости, за последние 100 лет:

Повышение температуры океанов с 1900 года:

Риск наводнений, ураганов и землетрясений в разных странах, ознакомьтесь перед путешествием :-)

Трогательная до слёз визуализация первого полёта человека в космос. Сочетание голоса, расшифровки переговоров, жизненных показателей и карты создаёт мощный эффект погружения, как будто стоишь за спиной первого человека, взглянувшего на «реки и складки местности» из космоса:

Фотографии небесных тел с сортировкой и фильтром по планете:

Интерактивный плакат об акулах от National Geographic; ныряльщик для масштаба, зубы в натуральную величину:

Алгоритм Δλ: реальность данных и каркас визуализации

На качественной визуализации оба экранных измерения работают, образуя один или несколько каркасов для массы данных. О типах осей и образованных ими каркасах мы поговорили в предыдущей заметке. Сегодня обсудим, как выбрать из множества измерений реальности данных те, что станут хорошим каркасом.

У этой задачи две степени сложности. В простом случае выбор каркаса очевиден. Это случай, когда измерений не слишком много, и сразу понятно, какие из них наиболее значимы и станут основой визуализации. В простом случае после того, как мы нашли частицу данных, сформировали массу из этих частиц и выделили эту массу в реальности данных, у нас остаётся этакий «остов», жёсткий статичный ландшафт, который и послужит каркасом визуализации. Этот ландшафт может быть плоским, тогда он просто становится каркасом визуализации. Например, мировая карта в истории землетрясений:

Временная ось, вдоль которой раскрываются траты из личного бюджета:

История голосования разных штатов — не самый очевидный на первый взгляд формат. На деле, простая комбинация из визуальных атомов — линий-штатов, на каркасе временой оси и оси процентного преимущества победившего кандидата:

Ландшафт может быть многомерным, тогда нужно придумать, как его свернуть в плоскую картину. Например, схема маршрута и временной слайдер на визуализации Московского марафона:

Схема линии и временные интервалы на диаграмме загруженности Московского метро:

Результаты забега на стометровке — время финиша трансформировано в отставание (в метрах) от последнего мирового рекорда:

Если вы без труда выбрали осмысленные оси для обоих экранных измерений и получили интересный результат — ура, вам повезло! Подумайте, чем дополнить основной каркас и какие интересные измерения остались за кадром.

Например, визуализация Московского марафона дополнена интерактивной картой высот (оси— координата на дистанции и высота над уровнем моря) и диаграммой финишей (бегуны вдоль оси времени):

Траты личного бюджета можно перегруппировать по категориям или по времени суток/дню недели:

В истории землетрясений тоже интересно было бы взглянуть на временную развёртку, чтобы отследить отличившиеся по количеству и силе землетрясений года.

В сложных случаях я комбинирую оси с важными параметрами более-менее случайным образом, формулирую, на какой вопрос отвечает то или иное сочетание осей, выбираю самые удачные сочетания. Интересные картины получаются на стыке предположительно зависимых параметров данных:

И из распределения частиц данных вдоль разных осей:

При сочетании простых и удачных каркасов между собой получаются по-настоящему мощные визуализации. Например, исходная диаграмма активности и отдыха жителей разных городов:

Может быть дополнена сводными данными, усреднёнными по городам и показаными на одном графике:

И диаграммой среднестатистических недель по городам:

Объединим эти каркасы с помощью интерактивной связи в одну визуализацию и увидим множество срезов данных как на ладони:

Другие примеры комбинированных каркасов. Таймлайн + карта:

Карта + хитмеп:

Несколько однотипных графиков:

И даже последовательности однотипных графиков:

http://www.nytimes.com/interactive/2012/11/30/us/tax-burden.html?_r=0 http://www.nytimes.com/interactive/2012/11/30/us/tax-burden.html?_r=0

Выбор каркаса (или нескольких) — последний, самый трудный шаг, когда от массы данных и списка измерений мы переходим к визуализации в её окончательном виде. Признаюсь, я пока не до конца сформулировала все хитрости и подводные камни этого перехода, и ещё буду о нём писать. Надеюсь, что в этой заметке мне удалось ответить на вопросы Дениса и Ивана. Буду рада новым вопросам читателей.

Чтобы познакомиться с нашим алгоритмом «из первых рук» и научиться его применять, приходите на курс по визуализации данных, который я проведу в Москве, 8 и 9 октября.

Следующая теоретическая заметка выйдет 28 ноября.

Алгоритм Δλ: каркас визуализации и виды осей

Интерактивная визуализация живёт в двух измерениях плоскости экрана. Именно эти два измерения придают массе данных «жёсткость», систематизируют визуальные атомы и служат каркасом визуализации. От того, как использованы эти два измерения, зависит насколько интересной, информативной и полезной получится визуализация.

На хорошей визуализации каждому измерению соответсвует ось, которая выражает значимый параметр данных. В этой заметке поговорим о видах осей.

Непрерывная ось
На такой оси значения параметра откладываются вдоль одного из экранных измерений. При этом каждой точке на оси соответсвует своё значение параметра, а двум разным значениям параметра (даже близким) соответствуют разные точки на оси. Непрерывная ось подходит только для отображения количественных параметров.

С непрерывными осями мы знакомимся в школе, когда строим параболы:

Вообще, под графиком обычно понимают именно такой каркас — из двух непрерывных осей. Зачастую график показывает зависимость одной величины от другой, в таком случае по сложившейся традиции независимая величина откладывается по горизонтали, а предположительно зависимая — по вертикали:

График из двух непрерывных осей с точками-объектами:

Иногда на осях отмечают средние значения, и график делится на осмысленные квадранты («дорогие результативные игроки», «дешёвые результативные» и т. д.):

Также на графике можно провести лучи, они покажут соотношение параметров, отложенных по осям, которое само по себе может оказаться значимым параметром (в данном случае, конкуренция в отрасли):

Для наглядного отображения параметра с большим разбросом значений используют ось с логарифмической шкалой:

Оси пространства и времени
Важный частный случай непрерывных осей — оси пространства и времени, например, географическая координата или линия времени.

Карта, вид футбольного поля или баскетбольной площадки, схема производства — примеры комбинации двух пространственных осей.

Основой визуализации бывает одна непрерывная пространственная ось, например, погружение вглубь океана, в недра Земли или подъем в высоту:

Ещё один пример логарифмической оси

Графики с временной осью — первые абстрактные графики, которые положили начало визуализации данных:

И с успехом применяются до сих пор:

Ещё один способ показать временное измерение — дополнить пространственную картину слайдером:

В исключительных случаях пространство и время получается совместить на плоской карте или вдоль одной оси:

Карта наступления Наполеона на Москву в 1812 году
Диаграмма экспедиций Амундсена и Скотта

Интервальная ось
Интервальная ось разделена на отрезки (равные или неравные), которым ставится в соответствие значение параметра по определённым правилам. Интервальная ось подходит как для качественных, так и для количественных параметров.

Хитмеп — классический пример комбинации двух интервальных осей. Например, количество случаев заболевания по штатам и годам, показанных на соответствующем каркасе:

Название штата — чисто качественный параметр, каждому штату соответствует один шаг по вертикали. Год — непрерывное временное измерение, редуцированное до годовых интервалов. Каждому году соответствует один шаг по горизонтали.

Интервальные оси с мелким шагом (дни года по горизонтали, часы суток по вертикали) дают очень подробную, почти «непрерывную» картину:

Две интервальные оси не обязаны превращаться в хитмеп:

Интервальная ось может комбинироваться с непрерывной. Например, на этой визуализации наследия Пикассо по горизонтали отложены годовые интервалы, а по вертикали — непрерывная ось количества работ:

Другой пример комбинации интервальной и непрерывной осей — диаграмма найма «Хантфлоу». По горизонтали отложены этапы собеседования (качественный параметр), по вертикали — количество кандидатов на этапе:

Слоистая ось
В одно экранное измерение можно уложить сразу несколько осей (непрерывных и интервальных). Чаще всего этот приём работает с таймланами, когда на одну временную ось накладываются слои с данными, текстами и графикой:

Вырожденная ось
Иногда визуализации требуется ось, к которой не привязан конкретный параметр, либо на которой показано всего два значения. Чаще всего такое случается, когда визуализация иллюстрирует связи — чтобы проявить связь, необходимо пространство между объектами.

В комиксе о высоте Вселенной горизонтальное измерение также вырожденное.

Данные формата «было-стало» чаще всего требуют вырожденной оси:

Но она не обязательно «съедает» экранное измерение:

Вырожденная ось допустима, если проявляет важные особенности данных и таким образом «окупает» потерю целого экранного измерения. Но использовать её стоит только в крайнем случае. К сожалению, в эффектных популярных форматах инфографики часто вырождена одна или даже обе экранных оси.

Равномерная сетка
Ещё один способ использовать пространство экрана — заполненить его последовательными блоками по сетке. Объекты внутри сетки упорядочены линейно, например, по алфавиту:

По размеру города:

Или по номеру билета:

Сетка подстраивается под размер экрана и не имеет ярко выраженной горизонтальной и вертикальной направляющих.

В большинстве случаев каркас визуализации складывается из перечисленных выше осей. Редким исключением являются трёхмерные визуализации, ещё более редким — удачные их примеры. Встречаются также комбинированные визуализации, например, в которых график совмещён с хитмепом или картой. О комбинированных каркасах мы поговорим отдельно.

В следующий заметке я расскажу, как выбрать из множества измерений реальности данных те, что станут хорошим каркасом и отвечу на вопросы Дениса и Ивана.

Чтобы познакомиться с нашим алгоритмом «из первых рук» и научиться его применять, приходите на курс по визуализации данных, который я проведу в Москве, 8 и 9 октября.

Следующая теоретическая заметка выйдет 26 сентября.

Алгоритм Δλ: ответы на вопросы

Вопросы из зала разделю на три группы: об элементарных частицах, о каркасе и общие вопросы по алгоритму.

Элементарные частицы и визуальные атомы
Спрашивает Юлия Торгашова:

Я ломаюсь на элементарных частицах. Не могу экстраполировать на разные виды «частиц». Например, вот визуализация бюджета города, что в ней «элементарная частица» — деньги? учреждения? мероприятия? Про визуальные атомы при этом понятно.

Чтобы найти элементарную частицу нужно понимать, что искать. Элементарная частица данных — сущность достаточно крупная, чтобы обладать характерными свойствами данных, и при этом достаточно мелкая, чтобы все данные можно было разобрать на частицы и собрать заново, в том же или ином порядке.

Поиск элементарной частицы начинайте снизу вверх: ищите разные потенциальные частицы и примеряйте их к данным. «Деньги?» — хорошее начало, единица измерения бюджета, рубль, но слишком универсальная. Подойдёт, если не найдём чего-то более характерного для городского бюджет. «Мероприятия» не подходят, потому что не все бюджетные траты связаны с мероприятиями, есть и другие расходы, а элементарная частица должна описать всю массу данных. «Учреждения?» — с одной стороны, да, все бюджетные деньги можно разбить на отчисления тому или иному бюджетному учреждению. С другой стороны, это уже слишком крупная единица, ведь внутри учреждения может быть несколько транзакций, в том числе периодических. Если мы возьмём учреждение в качестве элементарной частицы, то будем оперировать только общим бюджетом этого учреждение и потеряем временной срез, а также возможный срез по целевому назначению средств.

В моих рассуждениях уже несколько раз промелькнула элементарная частица — отчисление, однократное перечисление бюджетных средств в определённом размере (те самые рубли) в определённую организацию на определённые цели (например, на мероприятия), привязанное ко времени. Отчисления бывают периодические и нерегулярные, цель может состоять из нескольких уровней иерархии: на мероприятие → на организацию концерта → гонорар исполнителя. Из отчислений состоит вся расходная статья городского бюджета, при этом отчисления можно складывать между собой, сравнивать, отслеживать динамику. Если нужно визуализировать приход бюджета, используйте частицу-близнеца — поступление. Из поступлений можно составить картину формирования городского бюджета так же, как из отчислений — картину его использования.

Попробуйте начать с низов (с единиц измерения), примеряйте на роль частицы данных всё более крупные сущности и рассуждайте, почему та или иная сущность подходит или не подходит. В рассуждениях непременно проявятся новые сущности и намёки на частицу данных. Для найденной частицы обязательно выберите подходящее слово или термин, так легче в дальнейшем думать о ней и решать задачу. Юля, пожалуйста, напишите, стало ли понятнее, и какие остались вопросы.

Спрашивает Иван Печищев:

Как соотносятся визуальная частица и частица данных? Может ли у одной частицы данных несколько воплощений в визуальных частицах? Скорее всего, да. Как они соотносятся?

В публикациях вы подробно описали визуальную сторону (пиксель, прямоугольник и т. д.). Но какой логикой я из числа (количества, расстояния и пр.) дойду до визуальной частицы? Может, элементарные частицы ввести в таблицу? Как таблица Менделеева? Чтобы было видно их отличия и схожесть. Читаешь в отдельности — понятно, сравниваешь — много похожего.

Визуальный атом — это воплощение частицы данных на экране. Одна частица данных может выражаться разными атомами. Например, путь кандидата на диаграмме «Хантфлоу» показан линией:

Мы могли бы дополнить диаграмму возрастным распределением, на котором кандидаты показаны точками:

При этом цвет частицы мы сохраняем, и разные визуальные атомы представляют одну и ту же частицу с разных точек зрения. Идея о таблице визуальных частиц — отличная, спасибо! Подумаю, как её реализовать.

Спрашивает Антон:

Я сломался после столбиковых диаграмм. Там начинается какой-то ад. Диаграмму с детскими садами вообще не понял — кажется, она прямо противоречит написанному. Либо я тупой, либо эти атомы лучше использовать с большой осторожностью :—)

В статье речь не о формате «столбиковая диаграмма», а о прямоугольнике, как способе представления данных. У прямоугольника два линейных измерения + площадь, их производная + цвет. Прямоугольники состоят из пикселей.

На диаграмме садиков, пиксель — это ребёнок. Группируем детей (пиксели) по возрастам, получаются прямоугольные области разного размера. Чем больше детей в возрастной группе, тем больше площадь прямоугольника. Если сделать все прямоугольники одной высоты, то их ширина отразит разницу в размерах возрастных групп. Представьте детей на площадке, пусть они станут рядом с ровесниками. Получится подобие вот такой диаграммы:

Пока за кадром остался ещё один параметр (ради которого и затевается визуализация) — доступность садиков для каждого возраста. Если мы соберём всех детей в большой прямоугольник и разделим его на слои по возрастам (чем больше детей в возрастной группе, тем толще слой), то внутри каждого слоя можно будет провести границу между детьми, попавшими и не попавшими в сад. Внутри каждого слоя появится прямоугольник попавших в сад детей, высота которого пропорциональна размеру возрастной группы, а ширина — доступности садиков для этой группы, буквально, доле попавших в сад детей.

Закрашенные столбики на диаграмме — и есть прямоугольники, попавших в сад детей разных возрастов. Можно сравнить не только доступность садов для разных групп (ширину), но и количество детей попавших/не попавших в сад (площадь). Цветовое кодирование дублирует доступность, привлекая внимание к проблемам — крупным ярким пятнам.

Ландшафт и каркас
Спрашивает Денис Балуев:

Мне, как давнему читателю, понятны почти все пункты. Кроме седьмого. Перестаю понимать отличия ландшафта от каркаса. Возможно, здесь помогли бы примеры.

Спрашивает Иван Печищев:

Очень интересен процесс «схлопывания ландшафта». Тут тоже может быть разная логика и методы. Скажем, есть технический чертёж, а есть живопись или детский рисунок.

Тему ландшафта реальности данных и каркаса визуализации я раскрою в следующей заметке, там же отвечу на вопросы.

Общие вопросы по алгоритму
Комментирует Михаил Калыгин (привожу только вопросы):

У алгоритма есть жестко заданный выход — определенного вида ответы на интересующие нас вопросы по задаче, решение задачи. В зависимости от подхода к решению вход алгоритма может быть разным. С чего здесь начинать? Какие данные нам нужны для ответа? Как определять формат этих данных? Что делать, если данных нет?

Не затронут важный шаг алгоритма — предобработка данных. Так или иначе, мы не можем работать напрямую с реальностью данных. Мы можем теоретически описать эту реальность данных. Мы можем также описать элементарные частицы. Но на практике мы имеем лишь срезы реальности, гиперплоскости, грязные данные (те же таблицы). Какие из этих грязных данных нас интересуют и могут помочь нам в ответе на вопросы задачи? Как их нужно преобразовать, чтобы нам было удобно с ними работать? Какие упрощения и допущения мы можем себе позволить в рамках этой конкретной задачи? Нужно как-то грязные данные сделать чистыми и связать с элементарными частицами и визуальными атомами. Как?

В моём понимании цель алгоритма: визуализировать конкретный набор данных с максимально пользой для зрителя. Первичный сбор данных остаётся за кадром, у нас на входе всегда есть данные. Если нет данных, то и задачи по визуализации данных нет.

Данные, с которых мы начинаем работу, — это всего лишь отправная точка. После знакомства с ними, мы представляем породившую их реальность, где данных гораздо больше. В реальности данных, без оглядки на первоначальный набор мы выбираем данные, из которых могли бы сделать максимально полную и полезную для зрителя визуализацию.

Каким будет этот набор данных для «идеальной» визуализации — зависит от сценария использования и смекалки инфодизайнера. На этом шаге лучше взять больше, чем что-то упустить. В большинстве задач уже на этом шаге вырисовывается если не вид, то основная идея визуализации.

Следующий шаг — сравнить «идеальный» набор данных с тем, что мы имеем и понять, какие из первичных данных нам понадобятся, какие — нет, и какие необходимо добыть.

«Добыть» может означать найти, собрать или вычислить на основе имеющихся данных. Скорее всего доступными окажутся далеко не все данные «идеального» набора.

Эти данные мы и будем визуализировать. Таким образом на визуализации окажется максимально полезный из всех доступных слепок с реальности данных, а не разрозненный набор параметров.

Поясню на своём любимом примере — визуализации Московского марафона. На входе у нас финишные протоколы: имя, пол и возраст участника, номер, время финиша. В реальности данных толпа бегунов, каждый со своей скоростью преодолевает марафонскую дистанцию по улицам Москвы под палящим солнцем или в дождь. Мы хотим показать процесс, как бегут люди, идеальным будет набор данных с положением каждого бегуна, его скоростью, пульсом на всём протяжении забега, изменением высоты трассы и поминутно меняющейся погодой. Подробных данных о бегунах у нас нет и в ближайшее время не будет. Есть время финиша и прохождения 3-4 промежуточных точек на дистанции. По этим точкам можно аппроксимировать положение бегунов, пишем формулы, получаем координаты и скорость бегунов в каждый момент времени. Мы допускаем такую аппроксимацию, так как на больших отрезках марафонской дистанции движение плюс-минус равномерное, то есть порядок бегунов на трассе, за редким исключением, будет рассчитан правильно. Высоту подтягиваем с картографического сервиса, погоду и ветер берём из открытых источников. Собрав все эти данные воедино, начинаем колдовать над визуализацией.

Выходит, что ответ на большинство вопросов — здравый смысл. «Какие из этих грязных данных нас интересуют и могут помочь нам в ответе на вопросы задачи?» — те, что будут полезны для зрителя и помогут ему ответить на его вопросы. «Как их нужно преобразовать, чтобы нам было удобно с ними работать?» — так, чтобы было удобно работать. «Какие упрощения и допущения мы можем себе позволить в рамках этой конкретной задачи?» — те допущения, которые не нарушают общей картины и допустимы для решения этой задачи. «Как грязные данные сделать чистыми и связать с элементарными частицами и визуальными атомами?» — преобразовать, так чтобы было удобно работать, и визуализировать наиболее близкими по смыслу визуальными средствами. На последний вопрос как раз и отвечает алгоритм.

Как и обещала, три самых вдумчивых комментатора: Иван Печищев, Юлия Торгашова и Михаил Калыгин — получают скидку 5 тыс. руб. на осенний курс по визуализации данных. Огромное спасибо всем, кто отозвался!

Следующая теоретическая заметка выйдет 19 сентября.

Ранее Ctrl + ↓